Overview of Mosquito borne diseases

Dr Candice Holland Infectious diseases physician, Public Health Registrar West Moreton Health January 2023

Acknowledgement of Traditional Owners

I would like to acknowledge and pay my respects to the Jagera (jag-er-a), Yuggera (yug-er-a) and Ugarapul (U-gara-pul) Peoples, the Traditional Owners and Custodians of the land on which we are meeting today and recognise their continuing connection to land, waters and community.

I would like to pay my respects to elders' past, present and emerging.

Overview

- Key concepts / definitions
- Classification
- Epidemiology
- Mosquito-borne diseases in focus:
 - JEV
 - Dengue
 - Malaria
- Disease prevention and control strategies

One Health

 One Health is a collaborative, multisectoral, and transdisciplinary approach working at the local, regional, national, and global levels — with the goal of achieving optimal health outcomes recognizing the interconnection between people, animals, plants, and their shared environment. (CDC)

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2820%2931027-8/fulltext

Zoonosis

 Any disease or infection that is naturally transmissible from non-human vertebrate animals to humans. Transmission can be direct, indirect, vector-borne, food- or waterborne.

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2820%2931027-8/fulltext

Definitions

Vector-borne disease:

 Illnesses caused by parasites, bacteria or viruses that are transmitted from between hosts through the bite of an arthropod vector.

Arbovirus:

 Any of a group of viruses transmitted by mosquitoes, ticks or other arthopods

Arthropod vectors are ectothermic, thus particularly sensitive to climatic factors

https://www.science.org/doi/10.1126/science.abc2757

Vector		Disease caused	Type of pathoge	
Mosquito	Aedes	Chikungunya	alphairus	
		Dengue	flaviirus	
		Lymphatic filariasis	Parasite	
		Ross River fever (also transmitted by Culex sp.)	alphavirus	
		Yellow Fever	flavirus	
		Zika	flavirus	
	Anopheles	Lymphatic filariasis	Parasite	
		Malaria	Parasite	
	Culex	Japanese encephalitis	flavivirus	
		Lymphatic filariasis	Parasite	
		West Nile fever (kunjin)	flavivirus	
Aquatic snails		Schistosomiasis (bilharziasis)	Parasite	
Blackflies		Onchocerciasis (river blindness)	Parasite	
Fleas		Plague (transmitted from rats to humans)	Bacteria	
		Tungiasis	Ectoparasite	
Lice		Typhus	Bacteria	
		Louse-borne relapsing fever	Bacteria	
Sandflies		Leishmaniasis	Parasite	
		Sandfly fever (phlebotomus fever)	Virus	
Ticks		Crimean-Congo haemorrhagic fever	Virus	
		Lyme disease	Bacteria	
		Relapsing fever (borreliosis)	Bacteria	
		Rickettsial diseases (eg: spotted fever and Q fever)	Bacteria	
		Tick-borne encephalitis	Virus	
		Tularaemia	Bacteria	
Triatome bugs		Chagas disease (American trypanosomiasis)	Parasite	
Tsetse flies		Sleeping sickness (African trypanosomiasis)	Parasite	

https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases

Arbovirus classification

https://www.researchgate.net/figure/Classification-of-arboviruses-Arboviruses-are-included-in-sixdifferent-taxonomic-virus_fig1_259743924

Epidemiology

- Vector-borne diseases account for >17% all infectious diseases, cause >700 000 deaths annually globally
- Largest burden is due to Malaria (219M cases, 400 000 deaths per year)
- Dengue most prevalent viral infection (96M symptomatic cases, 40,000 deaths per year)
- In Queensland Ross River virus and Barmah Forest virus endemic, contribute the largest annual disease burden
- Emergence of Japanese encephalitis virus (JEV) across Eastern/Southern Australia in 2022

West Moreton Health

Steps of an outbreak investigation

- Confirm outbreak and diagnosis
- Case definition and identification
- Descriptive data collection and analysis
- Develop hypothesis
- Analytical studies to test hypotheses
- Special studies
- Implementation of control measures
- Communication, including outbreak report

Japanese encephalitis virus

https://www.health.qld.gov.au/news-events/news/what-is-mosquito-borne-japanese-encephalitis

What is JEV?

- Mosquito borne disease (MBD) Culex spp.
- Flaviviridae
 - ss+RNA, enveloped
- Waterbirds are natural reservoir
- People and horses are 'dead-end hosts'
- Pigs and some types of wild birds are 'amplifying hosts'

https://www.environment.act.gov.au/parks-conservation/plants-and-animals/biosecurity/biosecurity-alerts/japanese-encephalitis-virus

Epidemiology: Distribution prior to 2022

Australia:

- Three sporadic cases + animal detections in outer Torres Strait Islands and remote Cape York in 1990s
- Tiwi Islands 02/2021
- Imported cases in travellers from endemic areas

https://www.sciencedirect.com/science/article /abs/pii/S0168706906160103

Emergence in Mainland Australia

- 28 February 2022:
 - Concurrent detections in piggeries down the East Coast in 4 jurisdictions
 - Concern re: cluster of unwell persons in SA
- 03 March 2022:
 - First human JE case notified in QLD
- Now 45 confirmed or probable cases, 7 deaths
 - 5 in QLD

https://www.magonlinelibrary.com/doi/10.12968/live.2022.27.4.186

Clinical features

- Approximately 99% of JE cases have either no or mild or symptoms, like fever and headache.
- Encephalitis is rare
 - cause neck stiffness, disorientation, tremors, convulsions, paralysis, coma, permanent neurological complications, or death
- Incubation period 5-15 days
- Children under 5 and older people are at a higher risk of developing severe illness
- Treatment is supportive

Testing

- CSF JEV IgM (preferred sample)
 - May be taken too early in the illness for IgM to be present at a diagnostic titre.
 - One 1995 study only 75% of CSF samples taken on days 3-4 of the illness were positive; whereas more than 95% of those taken beyond day 10 of illness were positive.
- JEV PCR blood or CSF
 - Short viraemia limits the usefulness of PCR
- Flavivirus serology (specify "JEV" on request)
 - Two specimens at least 14 days apart, sens increases from ~75% IgM at day 4 to most pos at day 7-10

Public Health measures

- Surveillance animals, humans, mosquitoes
- Clinician alerts
- Public messaging self protective measures and reduce mosquito breeding sites
- Vaccines
 - Imojev: live attenuated, single dose primary course, 9m.o +
 - JEspect inactivated, 2 dose primary course, safe in pregnancy/immunocompromise

https://douglas.qld.gov.au/business/environmental-health/dengue-fever-facts/

Dengue virus

What is dengue virus?

- Flavivirus
 - 4 distinct, but closely related serotypes (DENV-1 to -4)
- Humans are the reservoir (monkeys in Africa)
- Leading cause of serious illness and death in some Asian and Latin American countries
- Transmitted by Aedes aegypti
 - urban mosquito, tropics and subtropics. Confined to QLD in Aus
 - Prefers man-made containers, indoor, sheltered resting sites.
 - Day biting
- Secondarily Aedes albopictus
 - Peri-domestic, pesty day-biting mosquito
 - Man-made + naturally occurring breeding sites
 - Aggressive coloniser, confined to Torres Strait in Aus

Global Epidemiology

- Most rapidly spreading mosquito-borne virus in the world 30fold increase over the past 50 years
- 100-400M infections annually in over 100 endemic countries Widespread throughout tropics
- Spatial variations
 - Due to transmission drivers as above
- Significant economic burden
 - Direct health care costs
 - Indirect loss of productivity

https://www.cdc.gov/dengue/areaswithrisk/around-the-world.html/

Drivers of dengue transmission

- Ecological factors
 - Vector species and abundance
 - Climate change via interaction with biotic and abiotic factors
 - Rainfall
 - Temperature
 - Relative humidity
 - Extreme events
 - Vertical transmission in mosquito
 - Cryptic and subterranean breeding sites

Drivers of dengue transmission

- Socio-demographic factors
 - Housing structure
 - Urbanisation
 - Population growth
 - Movement (people and goods)
 - Proximity to endemic areas
 - Water storage containers
 - Degree of urbanisation

Courtesy Dr Gulam Khandaker, Central Queensland Public Health Unit

Epidemiology in Queensland

- 3rd most common mosquito-borne virus after RRV and BFV
- Epidemics in North QLD predominantly from imported cases
- Not endemic in recent decades
- First noted 1873, epidemics date back to 1879
- Decrease in dengue incidence in late 1950s to early 1980s but increased since then

Figure 7: Number of overseas acquired dengue notifications by HHS area, Queensland, 01 July 2012 – 30 June 2017

Mosquito Borne Diseases in Queensland 1 July 2012 – 30 June 2017. Queensland Health, Communicable Diseases Branch. 2018: https://www.health.gld.gov.au/ data/assets/pdf_file/0020/712253/mbd-report-annual.pdf

Table 4: Notifications of dengue in Queensland, 1 July 2012 to 30 June 2017, by local or overseas acquisition (changes made to table)

	Place of acquisition	2012/13	2013/14	2014/15	2015/16	2016/17	Total (%)	
<	Queensland	207	203	70	33	18	531 (28.0)	
	Overseas	215	259	207	364	315	1360 (71.8)	
	Not available	0	1	0	1	2	4 (0.2)	
	Total (%)	422 (22.3)	463 (24.4)	277 (14.6)	398 (21.0)	335 (17.7)	1895	_

Figure 5: Notifications of dengue in Queensland with onset from 1 July 2012 to 30 June 2017, by month, year and place of acquisition

Locally acquired cases

- Outbreaks triggered by imported viraemic cases entering dengue receptive area
- 28% of notified cases 2012 2017
- 77% in Cairns and Hinterland HHS, 17% Townsville HHS
- Decreasing over time, most likely due to the implementation of *Wolbachia* in previously dengue-prone centres of Cairns and Townsville

Overseas acquisition of QLD reported cases

- Imported cases predominantly notified in large population centres in SE and North QLD
- In 2018: Oceania (40%) and SE Asia (43%)
 - Most common countries Thailand (17%) and Samoa (30%)
- Imports dependent on:
 - Season in country of acquisition
 - Travel activity
 - Virus circulation in areas of travel
 - Risk of exposure

Figure 8: Notifications of overseas acquired dengue 1 July 2012 to 30 June 2017, by year and serotype.

Mosquito Borne Diseases in Queensland 1 July 2012 – 30 June 2017. Queensland Health, Communicable Diseases Branch. 2018:

https://www.health.qld.gov.au/__data/assets/pdf_file/0020/712253/mbd-report-annual

Clinical features

- Incubation period 4-10 days
- Majority of cases asymptomatic or mildly symptomatic
- Occ. Severe flu-like illness, lasting 2-7 days
 - Severe headache, pain behind eyes, myalgia/arthralgia, nausea/vomiting, lymphadenopathy, rash
- Severe dengue
 - Caused with secondary infection with different serotypes
 - Severe plasma leakage, shock, ARDS, haemorrhagic shock, hepatic failure, encephalitis
- Treatment is supportive

Dengue Case Surveillance

- Early diagnosis is vital for rapid control measures
- Dengue is notifiable under PHA 2005
- FSS is arbovirus reference lab for QLD
- Detection is via direct methods PCR, NS1 antigen in bloods, and indirect methods – serology (issues with cross-reactivity)

Queensland Dengue Management Plan 2015-2020. Queensland Health, Communicable Diseases Branch. 20. https://www.health.qld.gov.au/___data/assets/pdf_file/0022/444433/dengue-mgt-plan.pdf

Public Health Management of Dengue

- Vector surveillance
- Timely detection, reporting and management of cases
- Control to prevent local transmission
- Reduce spread of vectors into novel geographic locations
- Support adoption of protective behaviours by the public
- Novel/research initiatives Wolbachia, vaccine development

http://www.mackay.health.qld.gov.au/dengue-fever-case-confirmed-bowen/

- Outbreak of dengue 2 in Rockhampton from May 2019
- First outbreak in the area for many decades
 - 71 y.o. male with illness onset from 05/05/2019. PCR Positive for DENV 2
 - Exposure period 23/04/2019 2/05/2019, No travel overseas or to FNQ
 - Viraemic period 4/05/2019 17/05/2019

'Full outbreak response': First Rockhampton dengue fever case in decades

https://www.abc.net.au/news/2019-05-24/first-locally-acquiredcase-of-dengue-fever-in-central-qld/11144996

- IMT formed 23/5/19
- Media release
- Public Health Alert for GPs/ED and local residents
- Working together with Rockhampton Regional Council
- ARCBS kept up to date
- Set traps at case residence
- Door knock immediate surrounding area + vector control
- Follow up any resident with symptoms and/or recent travel history from the immediate surrounding area

Queensland

- Total 20 cases (13 confirmed, 7 probable)
- No significant complications
- > 600 properties inspected and sprayed Aedes Aegypti found at significant number of those properties
- Media and public engagement +++

Outcomes of outbreak

- Declaring Rockhampton as a Dengue-receptive area
- Ongoing surveillance and control activities are important
- Increasing CQPHU's capacity in mosquito surveillance and control activities (e.g. staff training)
- Preparedness commitment from the council/targeted program (e.g. modification of environment, junk collection, ongoing surveillance and education)

Malaria

Malaria – the global burden

- One of the major tropical diseases of interest to WHO and other such organisations
- In 2013:
 - Estimated 198 million cases worldwide
 - Approx. 584 000 deaths, mostly African children
- It is preventable and treatable

Malaria – the global burden

- Some good news
 - Mortality rates have fallen globally by ~47% since 2000, and by ~54% in Africa
 - Predominantly by distribution insecticide treated mosquito nets and effective combination treatments

Distribution

Reported Malaria Cases, 2011

SOURCE: Kaiser Family Foundation, <u>www.GlobalHealthFacts.org</u>, based on WHO, World Malaria Report 2012; December 2012.

Distribution

- Largely tropical
- Developing countries
- Most cases and deaths in sub-Saharan Africa
- Australia declared Malaria free in 1981
 - Still ~600-800 cases annually
 - Mainly imported by travellers

Blood Parasites

- *Plasmodium* spp.:
 - Plasmodium falciparum
 - Plasmodium vivax
 - Plasmodium malariae
 - Plasmodium ovale
 - Plasmodium knowlesi

Transmission

• Anopheles mosquito

- 25 of 40o species are good vectors
- ie long-lived, robust, preferentially bite humans

Transmission

- Stable transmission
 - Constant, year round
 - Intense transmission, mortality highest in early childhood and most adult infections asymptomatic
- Unstable transmission
 - Low, erratic, focal
 - Full protective immunity not acquired therefore symptomatic at all ages
 - Large epidemics with substantial mortality when changes in environmental, social or economic conditions (often armed conflict)

Who is particularly at risk?

- Young children in stable areas, not yet immune
- Pregnant women in 1st and 2nd pregnancies
- HIV infected persons
- International travellers from non-endemic areas
- Immigrants returning home

Biology and Life Cycle

- Asexual cycle
 - 48 hrs for P. falciparum, P.vivax and P.ovale (tertian fever),
 - 72hrs for P. malariae (quartan fever).
 - 24hr for knowlesi
- Incubation period 12-14 days
- Parasite densities ~50/ μL at time of symptoms and detectability by microscopy and diagnostic tests

Biology and Life Cycle

- Parasites attach to erythrocytes via ligand-receptor interactions which are unique to different species
- Disease caused by red cell parasitisation and red cell destruction + host immune response
- Meiosis only occurs in mosquito

Recurrent or persistant malaria

- Blood stage can persist if untreated
- Intrahepatic forms can remain dormant as hypnozoites in P.vivax and P.ovale infections causing relapsing disease

Changes to the human genome

- Sickle cell disease
- HbC and HbE
- Ovalocytosis
- Thalassaemias
- G6PD deficiency
- Mechanisms: reduced parasite growth at low oxygen tension, reduced cyto-adherence, parasite densities and invasion and multiplication

Immune response

- Not completely understood
- Both innate and specific immune arms, humoral and cellular immunity
- Protect from illness but not infection

Clinical features

- Initially non-specific
- Fever
- Nausea, vomiting
- Orthostatic hypotension
- Fatigue
- Muscle aches
- Abdominal pain
- The eighth great mimic!

Clinical features

- Examination findings
 - Fever
 - Anaemia
 - Hepatosplenomegaly
 - Jaundice
 - Respiratory distress: APO, acidosis

Clinical Features

- Severe malaria
 - P.falciparum cause adhesive proteins to be expressed on erythrocyte surface allowing adherence to vessel walls and each other
 - Leads to sequestration in organs (brain, placenta)

Clinical Features

- Severe malaria
 - Severe anaemia
 - ALOC
 - Jaundice
 - >2% RBCs parasitised
 - Metabolic acidosis
 - AKI
 - ARDS
 - Warrants immediate IV antimalarial therapy

- Cerebral malaria
 - Extensive microvascular obstruction of capillaries and venules, impaired perfusion
 - Intact BBB and little inflammation
 - \uparrow ICP secondary to \uparrow cerebral blood volume

- Cerebral malaria
 - 3-15% children who survive cerebral malaria have residual neurological defecits
 - Hemiplegia
 - Cerebral palsy
 - Cortical blindness
 - Deafness
 - Impaired cognition, language and learning
 - Epilepsy

- Pulmonary Oedema/ ARDS
 - **↑**pulmonary capillary permeability, particularly on commencement therapy
 - Pathogenesis not fully understood
 - Therapy is careful fluid balance management, avoidance rapid infusion large boluses
 - Mortality >80% or >50% if mechanical ventilation avail.

- AKI
 - ATN type picture likely secondary to impaired microcirculatory flow
 - Early haemodialysis/haemofiltration
- Jaundice
 - Haemolysis, hepatocyte injury, cholestasis
 - Chronic Hep B coinfection common and predisposes to severe malaria

Interaction with other infections

- Invasive bacterial infections
 - Translocation gut bacteria across enteric epithelia
 - Functional exhaustion PMNs
 - Haemolysis induced dysfunction haem-oxygenase 1 induction
- Misdiagnosis severe infections in children with incidental parasitaemia
- Acceleration HIV transmission and progression, more severe malaria in HIV infected patients

Malaria in pregnancy

- LBW
- High infant mortality
- Foetal distress
- Premature labour and stillbirth
- \uparrow frequency more severe malaria in mother
- 5% congenital malaria

Diagnosis

- Thick and thin films
- Rapid diagnostic tests

Thick and thin films

Rapid diagnostic tests

- PfHRP2
 - Can be quantitative in serum for estimation sequestered biomass
- Pan-malaria species specific LDH
- Aldolase ag in fingerprick

Prevention

- Vector control
 - Pyrethroid treated mosquito nets (some resistant mosquitoes)
 - Indoor insecticide spray
- Chemoprevention and chemoprophylaxis
 - Never 100%
- Vaccination
 - RTS,S subunit antisporozoite protein

Chemoprophylaxis

- Atovaquone-proguanil (once daily)
 - Inhibitor parasite mitochondrial fx, pyrimidine biosynthesis + DHFRi
 - Renally cleared, pregnancy cat. B2
 - SE's GI upset, allergy, pancytopenia, hepatitis
- Doxycycline (once daily)
- Mefloquine (once weekly)
 - may form toxic complexes with free haem that damage membranes and interact with other plasmodial components
 - Pregnancy B3
 - SE's GI upset, neuropsych, prolonged QT, interaction with quinine

Treatment

- Severe malaria parenteral therapy
 - IV artesunate
 - Mechanism not fully understood, ?inhibit DNA replication and transmission
 - Well tolerated, cardiotoxicity at high doses, drug fever, BM suppression, delayed haemolysis
 - Superior to quinine
 - IV quinine
 - Many SE's: rash, fever, hepatitis, hypoglycaemia, haemolysis in G6PD defic., visual effects

Treatment

- Uncomplicated malaria
 - Artemether-lumefantrine
 - Inhibits conversion haem haemazoin + impairs nucleic acid and protein synthesis
 - Pregnancy category D
 - SE's reported often similar to malaria symptoms
 - Atovaquone-proguanil
 - Quinine + doxycycline or clindamycin

Supportive management

- Early haemofiltration/HD
- Regular BSL monitoring ± dextrose infusion
- Monitor parasite count and hct Q6-12H, transfusion support
- Careful fluid balance
- Treat co-infections
- Combination therapy as soon as possible

References

- Who.int
- CDC
- ECDC
- QH communicable disease control guidelines

Thank you

